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Abstract

We explore the properties of a Wald type test statistic for detecting the presence of threshold

effects in time series when the underlying process could be nearly integrated as opposed to having

an exact unit root. We derive its limiting distribution and establish its equivalence to a normalised

squared Brownian Bridge process. More importantly we show that the limiting random variable no

longer depends on the noncentrality parameter characterising the nearly integrated DGP. This is an

unusual occurrence which is in stark contrast with the existing literature on conducting inferences

under persistent regressors where it is well known that the noncentrality parameter appears in the

limiting distribution of test statistics, making them impractical for inference purposes.
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1 Introduction

This paper is concerned with conducting inferences within an environment that combines threshold type

nonlinearities with the presence of a highly persistent variable that is close to a unit root process. We

are interested in obtaining the limiting distribution of a Wald type test statistic for testing the null of

linearity against a threshold autoregressive alternative when the linear process under the null is local to

a unit root.

From the early literature on threshold models (see Tong (1983), Chan (1990), Hansen (1996) and

references therein) it is well known that within stationary and ergodic environments the limiting distri-

butions of test statistics designed to test for the presence of threshold effects are typically not free of

nuisance parameters. More recently and moving away from a stationary and ergodic setting Caner and

Hansen (2001) explored the asymptotics of a Wald type test statistic for threshold effects in an environ-

ment in which nonlinearities and exact unit root type nonstationarities could coexist. They developed its

asymptotics for testing the null of linearity againts a threshold type alternative when the underlying null

model contains a unit root. Pitarakis (2008) extended their results by showing that under the exact unit

root setting and particular scenarios the nuisance parameter problem vanishes and the distribution of the

Wald statistic for testing for the presence of threshold effects takes the well known form of a normalised

quadratic form in Brownian Bridges. These contrasting results between purely stationary and exact unit

root settings are the key motivations of this paper. More specifically, we are interested in assessing the

asymptotics of the same Wald type test statistic for detecting threshold effects when the null model is

local to a unit root process as opposed to having an exact unit root. This will also allow us to assess how

accurate the asymptotic approximations developed in Caner and Hansen (2001) and Pitarakis (2008) are

when we deviate from the exact unit root within the null model.

The plan of the paper is as follows. Section 2 introduces our model and test statistic and presents

its limiting distribution. Section 3 illustrates our theoretical results through a simple simulation based

exercise. Proofs are relegated to the appendix.

2 The Model and Asymptotic Inference

We are interested in testing H0 : β1 = β2 in

∆yt = β′1xt−1I(Zt−1 ≤ γ) + β′2xt−1I(Zt−1 > γ) + et (1)

with xt−1 = (1 t yt−1)′ and βi = (µi δi ρi) for i = 1, 2. Zt−1 is our threshold variable and the threshold

parameter γ is assumed unknown with γ ∈ Γ = [γ1, γ2]. As in Caner and Hansen (2001) γ1 and γ2 are
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selected such that P (Zt ≤ γ1) = π1 > 0 and P (Zt ≤ γ2) = π2 < 1 for some reasonable π′is. In the

discussion that follows we also replace the threshold variable Zt−1 by a uniformly distributed random

variable making use of the equality I(Zt−1 ≤ γ) = I(G(Zt−1) ≤ G(γ)) ≡ I(Ut−1 ≤ u) where G(.) is

the marginal distribution of Zt and Ut denotes a uniformly distributed random variable on [0, 1]. For

notational simplicity we use I1t−1 ≡ I(Ut−1 ≤ u) and I2t−1 ≡ I(Ut−1 > u) throughout.

In Caner and Hansen (2001) the authors derived the limiting behaviour of a Wald type test statistic

for testing H0 : β1 = β2 in (1) when the underlying process was known to contain an exact unit root and

given by ∆yt = et. Proceeding under the same probabilitic assumptions as in Caner and Hansen (2001,

pp 1558-1559) our goal here is to instead explore the limiting behaviour of the same Wald statistic when

the underlying process is nearly integrated as in

∆yt =
c

T
yt−1 + et (2)

with c < 0. Although not repeated here for space considerations, the assumptions of Caner and Hansen

(2001) can be succintly stated as requiring {et, Ut} to be strictly stationary and ergodic and strong mixing

with appropriately defined mixing numbers. Furthermore et is also restricted to be zero mean i.i.d with

a finite fourth moment. As it is standard in the unit root literature it is also understood that there are

no deterministic trend components in the data generating process.

As highlighted in Hansen (1996) it is well known that limiting distributions of statistics designed to test

H0 : β1 = β2 are not free of nuisance parameters when operating under stationarity and ergodicity. They

typically depend on model specific moments such as the variance of regressors amongst other quantities.

At the same time, Pitarakis (2008) showed that under particular scenarios these limiting distributions

become free of nuisance parameters and take familiar forms that are already tabulated in the literature

when the model under the null contains an exact unit root. These two observations are what motivates

our new setup in which the linear null model is now assumed to be local to a unit root process as in (2)

above.

Given our parameterisation it is now straightforward to obtain the expression of the Wald statistic

of interest. For greater convenience we write (1) in matrix form as ∆Y = X1β1 + X2β2 + e. We let

X = X1 + X2, β = (β1 β2)′ and define R = [I3 − I3] so that our null hypothesis can be rewritten as

H0 : Rβ = 0 with the corresponding Wald statistic for given u or γ given by WT (u) = (β̂1− β̂2)′[X ′1X1−

X ′1X1(X ′X)−1X ′1X1](β̂1−β̂2)/σ̂2
e . The following proposition summarises the limiting behaviour of WT (u)

under the null hypothesis of interest. Note that our inferences fall within the well known problem of

an unidentified nuisance parameter under the null (here the threshold parameter) which we handle by

following common practice and focusing on the Supremum Wald statistic.
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Proposition 1. Under the same assumptions as in Caner and Hansen (2001), H0 : β1 = β2 and the

parameter restriction ρ1 = ρ2 = c/T we have supuWT (u)⇒ supuBB(u)/u(1−u) as T →∞ with BB(u)

denoting a standard Brownian Bridge process of the same dimension as βi.

The above Proposition establishes that the limiting distribution of the Wald statistic for detecting the

presence of threshold effects under near integratedness is identical to the one that occurs under the

presence of an exact unit root. More importantly, our result in Proposition 1 highlights an environment

in which the noncentrality parameter c no longer appears in the limiting distribution despite being

present in the DGP. This is a highly unusual occurrence and appears to be unique to this threshold

based framework. The difficulties with using parameterisations such as (2) are well known in the unit

root, cointegration or predictive regression literature where inferences have always been plagued by the

appearance of the noncentrality parameter c in the limiting distributions. It is only very recently that

a solution to this problem has been proposed through the use of an IV based technique developed in

Phillips and Magdalinos (2009). Our result in Proposition 1 also suggests that findings in Caner and

Hansen (2001) continute to hold under deviations from the exact unit root scenario.

3 Simulation Based Analysis

To gain further insights into the above large sample based result we simulate data taking (2) as our DGP

and explore the finite sample size properties of our SupWald statistic across different magnitudes of c and

sample sizes. The idea is to numerically demonstrate the phenomenon presented in Proposition 1 and

document its robustness to alternative choices of c since from Hansen (1996) we know that the limiting

distribution of the SupWald statistic for testing threshold effects is not free of nuisance parameters when

we operate under pure stationarity.

For our size based analysis we use Hansen’s (1997) p-value approximations which aim to provide

pvalues for the supremum of a normalised squared Brownian Bridge type of limit as in Proposition 1 (see

also Andrews (1992)). Once we have generated our samples from our null DGP we count the number of

times H0 : β1 = β2 is rejected using c ∈ {0,−1,−5,−10} and T ∈ {200, 500, 1000}. Results are presented

in Table 1 below which uses a nominal size of 2.5% and N = 5000 replications. All random variables are

taken as NID(0,1).

Table 1. Empirical Size across Noncentrality Parameter Magnitudes (2.5% Nominal)
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c = 0 c = −1 c = −5 c = −10

T = 200 2.32 2.20 2.06 2.00

T = 500 2.30 2.32 2.44 2.44

T = 1000 2.46 2.47 2.48 2.45

As expected we first note the inadequacy of the limiting distribution in Proposition 1 when T is

small and c is far away from 0. Under c = −10 and T = 200 for instance we have an empirical size

of 2.00% when the nominal one is 2.50%. This discrepency highlights the fact that the above limiting

approximation is inadequate when we move away from integratedness towards stationarity as discussed

above. Looking at the results under T = 1000 on the other hand we note that the empirical sizes match

their nominal counterparts very closely regardless of the magnitude of c, illustrating very clearly our

theoretical result in Proposition 1.
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APPENDIX

PROOF OF PROPOSITION 1: We write WA
T (u) under H0 : β1 = β2 as

WA
T (u) = [e′X1 − e′X(X ′X)−1X ′1X1][X ′1X1 −X ′1X1(X ′X)−1X ′1X1]−1

[X ′1e− (X ′1X1)(X ′X)−1X ′e]/σ̂2
e . (3)

With DT = diag(T 1/2, T 3/2, T ) we have

D−1
T X1

′X1D
−1
T =


∑

I1t−1

T

∑
tI1t−1

T 2

∑
yt−1I1t−1

T 3/2∑
tI1t−1

T 2

∑
t2I1t−1

T 3

∑
yt−1tI1t−1

T
5
2∑

yt−1I1t−1

T 3/2

∑
yt−1tI1t−1

T
5
2

∑
y2

t−1I1t−1

T 2

 (4)

from which we obtain the following weak convergence results

D−1
T X1

′X1D
−1
T ⇒


u 1

2u u
∫ 1
0 Kc(r)dr

1
2u

1
3u u

∫ 1
0 rKc(r)

u
∫ 1
0 rKc(r) u

∫ 1
0 rKc(r)

∫ 1
0 K

2
c (r)


≡ u

∫ 1

0
Kc(r)Kc(r)′ (5)

and

D−1
T X ′XD−1

T ⇒
∫ 1

0
Kc(r)Kc(r)′ (6)

where Kc(r) = (1, r,Kc(r)). The above results follow from Theorem 3 in Caner and Hansen (2001) and

Lemma 3.1 in Phillips (1988). The diffusion process Kc(r) is an Ornstein-Uhlenbeck process defined as

Kc(r) =
∫ r
0 e

(r−s)cdBe(s) with Kc(r) such that dKc(r) = cKc(r) + dBe(r), Kc(0) = 0 and Be(r) is the

Brownian Motion associated with et. Note that we can also write Kc(r) = Be(r) + c
∫ r
0 e

(r−s)cBe(s)ds. It

now follows from the continuous mapping theorem that

[D−1
T X1

′X1D
−1
T −D−1

T X1
′X1(X

′X)−1X1
′X1D

−1
T ]−1 ⇒ 1

u(1− u)

×
(∫ 1

0

Kc(r)Kc(r)
′
)−1

. (7)

We next focus on the limiting behaviour of D−1
T X ′u and D−1

T X ′1u. Looking at each component separately,

setting σ2
e = 1 for simplicity and no loss of generality and using Theorem 2 in Caner and Hansen (2001),

we have

D−1
T X1

′u =


∑

I1t−1et√
T∑

tI1t−1et

T 3/2∑
yt−1I1t−1et

T

⇒


Be(r, u)∫ 1
0 rdBe(r, u)∫ 1

0 Kc(r)dBe(r, u)

 (8)
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and

D−1
T X ′u =


∑

et√
T∑
tet

T 3/2∑
yt−1et

T

⇒


Be(r, 1)∫ 1
0 rdBe(r, 1)∫ 1

0 Kc(r)dBe(r, 1)

 . (9)

where Be(r, u) is a two parameter Brownian Motion as defined in Theorem 1 of Caner and Hansen (2001).

The above now allows us to formulate the limiting behaviour of D−1
T X1

′e− uD−1
T X ′e as

D−1
T X1

′e− uD−1
T X ′e ⇒

∫ 1

0
Kc(r)dGe(r, u) (10)

where Ge(r, u) = Be(r, u) − uBe(r, 1). The result then follows straightforwardly through the use of the

continuous mapping theorem, standard algebra, and crucially, by noting that the random variable in

(A.8) is mixed normal N(0, u(1− u)
∫
Kc(r)Kc(r)′) due to the independence of Ge(r, u) and Kc(r) since

E[Ge(r1, u1)Kc(r2)] = 0 and both processes are Gaussian. Thus combining (A.8) and (A.5) gives the

result in Proposition 1.
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